Robust Mobility Modeling (RMM)

Point of Contact: Dr. Niki C. Deliman

USAERDC

Waterways Experiment Station

Vicksburg, Mississippi

questions/comments can be directed to: deliman@mail.wes.army.mil

RMM: Presentation Overview

Problem Definition
Purpose & Scope
Research Objectives
Approach
Milestones
Ongoing Activities
Summary

RMM: Problem Definition

- Previous off-road mobility modeling efforts focused on maximum speed potential (e.g., NRMM)
- Modeling off-road mobility at less than 100% throttle and on a high-fidelity scale for multiple passes is critical for
 - virtual environments
 - procurement
 - training
- Scenes and images can be readily produced but will not meet the needs of the vehicle developer or training environment unless the physics is realistically portrayed

RMM: Purpose & Scope

- Purpose: model soil tire / track interaction for a vehicle moving along a traverse
- Involves characterizing inter-relationships between
 - load distribution
 - sinkage
 - motion resistance
 - slip
 - tractive force
 - soil properties
- Scope:
 - off-road vehicle mobility
 - wheeled and tracked vehicles
 - straight-line motion
 - deformable soil conditions

RMM: Research Objectives

- Develop load-sinkage and traction-slip algorithms to describe soil-track or soil-tire interaction
 - theoretically based
 - validated with field testing
- Produce a mobility modeling capability by integrating algorithms into existing vehicle dynamics platforms
 - incorporate traverse characteristics
 - portable to various models/systems
 - capable of evaluating concept vehicles
- "Put physics behind the scenes"

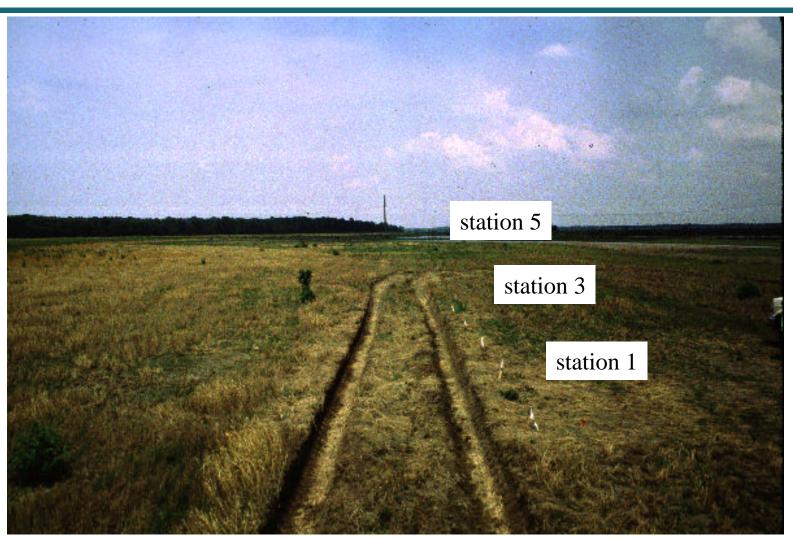
- Utilize readily available parameters (e.g., cone index)
- Incorporate effects of repeated loading on soils
- Employ dynamically loaded footing analogy
- Generate time history of load distribution from vehicle dynamics models
- Couple soil response and vehicle dynamics models to create action-reaction sequences

FY93-96 Accomplishments

- Developed load-sinkage algorithms for wheeled and tracked vehicles
- Conducted ongoing validation of algorithms via field tests
- Developed traction-slip relationships for wheeled and tracked vehicles
- Integrated traction-slip algorithms for wheeled and tracked vehicles into RMM
- Coupled soil response algorithms with vehicle dynamics model
- Developed demonstration capability on VEHDYN platform
- Investigated utility of Weighmat technology jointly with Airfields and Pavements Division

•	Validate traction/slip algorithms for tracked and	
	wheeled vehicles for integration into RMM30)97

- Complete validation of RMM algorithms......4Q97



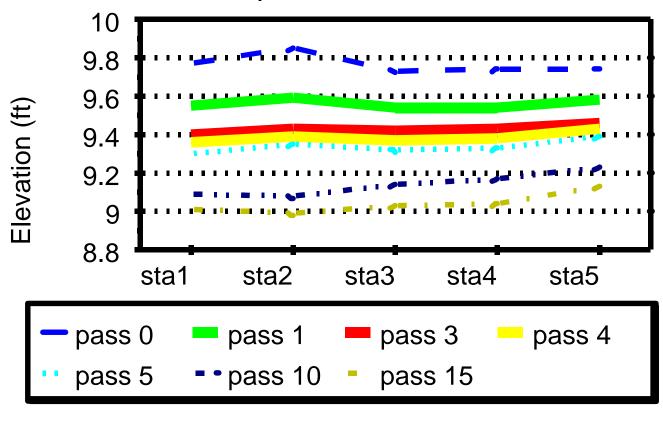
RMM: Ongoing Activities

- Field validation and data collection
 - multiple measurements along a traverse
 - measure wheel speed, vehicle speed, throttle position, tractive force, cone index, and sinkage
 - evaluate left and right ruts at several stations
- Integration of traction-slip relationships into soil response - vehicle dynamics platform
 - acceleration/deceleration
 - variable throttle position

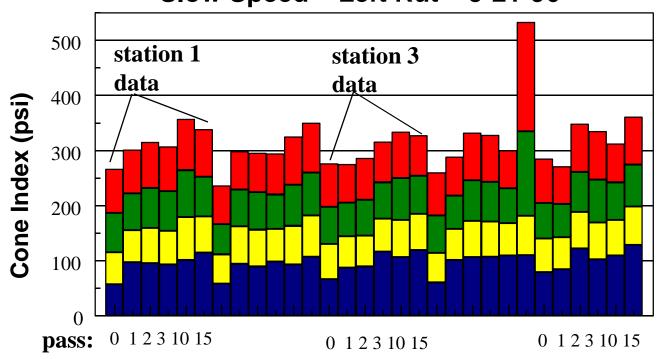
FACTORS	LEVELS
Soil Type	Clay, Silt, Sand
Vehicle	HMMWV (2), M1078, M923A2,
	M113A2, M2
Speed	Constant, Variable

Typical course layout for data collection and validation testing

M1078 used in validation testing


Rutting formed by M1078 used in validation testing

- The next 2 slides present sinkage data and corresponding cone index data collected during validation testing with the M1078
- Note: maximum sinkage (considering consecutive passes) occurs after the first vehicle passage
- Note: soil strength (cone index) increases with the number of passes
- Algorithms developed under the RMM program model resultant load, sinkage, motion resistance, traction, and slip for a specified vehicle traversing a deformable medium


Field Test: LMTV (M1078) Unloaded

Slow Speed Left Rut 5-21-96

Field Test: LMTV (M1078) Unloaded Slow Speed Left Rut 5-21-96

soil depth (inches):

- Work effort will result in a capability to
 - evaluate off-road mobility at higher fidelity
 - support future research endeavors for virtual environments
 - explore vehicle design changes
- Algorithms portable to various vehicle dynamics platforms
- Methodology will
 - include dynamic mass
 - incorporate multi-pass representation
 - model mobility at less-than-maximum potential

